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S~SUMMARY

Some differences between the mathematical treatment of magnetic cores with a linear

characteristic and those with rectangular hysteresis loops are reviewed. Neeteson's

approximation to the flux switching characteristic of the latter is applied to a circuit

with the primary winding energized by a current step, and the secondary winding ter-

minated in a series combination of inductance and resistance. After several changes

of variable the resulting differential equation reduces to:

d 2u + (C1 + C2 sin u) du C

dt 2 1 2 TT C

where u is a function of the flux in the core, t is time, and the C Is are constants.

By assuming that sin u is constant over successive small time intervals, this equa-

tion is solved by means of the Laplace transform. An auxiliary differential equation

for the secondary current is solved by utilizing an integrating factor and numerical

integration. Curves of flux and current versus time are given for the cases:

SC1 = 1 ; C2 0 0, 1 , 2 , 4 ; C 3 = 20 .
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Section 1

StINTRODUCTION

By approximating with a semicircle the flux switching characteristic of a ferrite core

possessing a rectangular hysteresis loop, Neeteson (Ref. 5), has simplified consider-

ably the analysis of switching circuits containing such cores. Generally, the resulting

differential equations are nonlinear. Neeteson has presented solutions for circuits in

which a primary winding on the core is energized by a step current generator, and a

secondary winding is terminated by resistance, by inductance, and by a parallel com-

bination of resistance and inductance. One is led quite naturally to inquiring into the

effect of terminating the secondary winding with a series combination of resistance

and inductance. It will be shown that, after certain transformations, the resulting

j differential equation has the form

du 2 s du

dt (C 1 +C2 sinu) - = C3

The flux in the core is a function of the variable u

This paper is concerned principally with a method for solving numerically the fore-

going differential equation. A few examples have been considered. The solutions are

presented in the form of graphs for the variable u and for the output voltage and cur-

rent, which are derivable from u by simple operations, time being the independent

variable. Before delving into the method of solution, however, it is desirable to pre-

face a few remarks concerning the differences in analytical treatments between cores

I with linear characteristics and cores with square hysteresis loops.

I
I
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According to the well-known analogy between magnetic and electric circuits, the

magneto-motive force in ampere-turns NI (MKS units), the reluctance R in ampere-

turns per weber and the flux q' in webers are related by the equation (Ref. 6).

MMF NI = Rq . (1)

Neeteson uses the symbol (AT) for NI , so that, following his notation, Eq. (1)

becomes

(AT) = Rqp. (la)

For the square-looped core being switched, the pertinent equation relating output volt-

age (which is equal to dqp/dt in webers/sec) and the ampere turns (AT) is

=(AT)• r. f((p) = (AT) 7 r 2 r1- (1- q•!Am)2 (2)dt

where

r is a function of both the material and the shape of the core, and has the

dimensions of resistance in ohms,

and: f( q') = - (1 - (p/(Pm)2  is a nondimensional relation approximating thp

flux switching characteristic of the core in terms of the ratio of the flux 0 which

has been switched to cp ', the latter being one-half the total flux capable of being

switched.

Two figures, taken from Neeteson, will aid in clarifying the ideas involved. Figure 1-1

shows an idealized hysteresis loop for a core, and serves to define q'm . Figure 1-2

shows the curve of a function derived by Lindsey (Ref. 4) which Neeteson approximated

1-2
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I
by the foregoing f(4p). While the hysteresis loop of Fig. 1-1 pertains to the low-

frequency alternating-current properties of the core, both curves of Fig. 1-2 concern
the switching properties of the core to the extent described by Eq. (2).

I = 2p m

I
I

(AT)

I0I
"I

Fig. 1-1 Idealised Hysteresis Curve Illustrating
the Meaning of ýp and m m. (Taken
from Neeteson.)I

1.0

-0- 0.5 .

0 0.5 1.0 1.5 2.0

IO/Pn

Fig. 1-2 Approximation of Lindsey's Curve (drawn
in broken line) by a Semi-Circle. (Taken
from Neeteson.)

I 1-3
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i
The important point is that in Eq. (1) or (la) the flux is proportional to the ampere-

turns, whereas in Eq. (2) the rate of change of flux is proportional to the ampere-

turns. Since dq'/dt (in webers/second) is equal to a voltage, Eq. (2) actually states

that the core acts like a nonlinear resistor, r . V1 1 - (/•m) , in contrast to

the customary consideration of a winding on a magnetic material as an inductor.

The magnetic switching resistance r, which is a constant multiplier of the flux

function, depends on the core material and geometry. Its defining equation is:

A
r = p - ohms, (core) (3)

where:

p is the magnetic switching resistivity of the material in ohms per meter,

I is the mean path length in meters,

A is the cross-sectional area in square meters.

This equation should be contrasted with the well-known formula for the electrical

resistance of a wire of length 2 and cross sectional area A:

r = p I = ohms, (wire) (4)

where, now, p is the electrical resistivity of the material in ohm-meters. It is

immediately evident that the geometrical terms A and 2 for a core are inverted with

respect to the terms for a wire; consequently the magnetic switching resistivity for a

core has the dimension ohms per meter. It is interesting to see why this inversion

exists.

The core resistance is defined as the ratio of the maximum pulse output voltage

(dqu/dt) m to the effective input ampere turns (AT):

r = (AT) (5)

1-4
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Core resistance is measured experimentally as the slope of the straight line obtained

by plotting the maximum pulse output voltage (dqo/dt)m versus the input ampere

turns N1 11 , of the same form used to drive the circuit. The input turns N1 11 are

related to the effective input ampere turns (AT) by the relation

(AT) = N I, - (AT) 0 , (6)

where (AT) 0 is the threshold value below which no output voltage due to irreversible

switching is obtained. See Fig. 1-3 (taken from Neeteson). Equations (5) and (6) may

be combined to give:

dt ( = r(NIII) - r(AT) 0  (7)I

I

I

I-d I

I(AT) 0  1n 1  00

Fig. 1-3 Graph by Means of Which the Value of
r = tan a~ can be ascertained. (Taken

I
from Neeteson.)

I 1-5
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I

Upon taking the derivative of (dtp/dt) m with respect to N 1 I, (r and (AT are

assumed to be constant with respect to time) we obtain: j

r (8)d(N 1 11 )

This expression is the slope of the foregoing mentioned straight line. The quantities

on the right-hand side of Eq. (8) may be expressed in terms of the more fundamental

quantities B and H (flux density and field intensity, respectively):

(AE m = t(dBA) Id L3
t 

m

and:

N1 I1 = Hf

With these substitutions Eq. (8) becomes:

d(HI) dH (9)

The derivative d [(dB/dt)mJ/dH is a function of the core material only. This

quantity has been denoted by p:

Fd( ) m

dH (10)

Equation (9) becomes:

A
r = p - ohms (core)

The foregoing explanation, beginning wit'i Eq. (5), accounts for the inversion of

geometrical terms referred to previously.

1-6
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I
Equation (2) is utilized in Section 2 to derive the differential equation for the circuit

of concern. This is followed in Section 3 by the mathematics of the method for solving

that differential equation. In Section 4 another differential equation relating the

� secondary current to the rate of change of flux is solved by means of an integrating

factor and numerical integration. Computed curves are presented and discussed in

f Section 5. The paper is concluded with a short summary in Section 6.

I
I

I
!
I
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Section 2

DERIVATION OF THE DIFFERENTIAL EQUATION

d 2u + (C1+ (C sin u) du- = C3d du =

dt 2 1 2 d

The circuit to be analyzed is shown schematically in Fig. 2-1. Upon taking into account

the secondary ampere-turns N2 12, which tend to oppose the driving ampere-turns

N1 11 Eq. (2) of Section 1 is modified to become:

_ r/l - (1 - q/lm)2 1N1  - (AT)o - N212 . (1)

11 2R2

Fig. 2-1 Circuit of a Core Driven by a Current Generator I1
with the Secondary Terminated by Inductance and
Resistance in Series.

2-1
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In order to find the secondary current we make use of Faraday's law that the voltage

induced in the secondary winding by the change of flux in the core is N2 dq'/dt . This

is equal to the sum of the voltage drops across inductor L2 and resistor R2

dI2
N2 L = L2 + R21 (2)2 dt 2 dt 2 2*I

These two equations suffice to define the circuit behavior completely. The driving

force N1 11 is assumed to be a known function of time as, for example, a step function

or a ramp. The maximum flux 2 (pm and the threshold value of ampere turns (AT)0

are assumed to be known, as well as the values of L 2 , R 2 , N 1 , and N2 . The

quantities (p and 12 are the unknowns. The problem consists in eliminating one of

these, 12, for example, from either of the two equations, thereby obtaining an equa-

tion in terms of (p only. If the equation in (p alone can be solved, the answer can be

substituted into Eq. (2) which is then solved for 12.

Proceeding along these lines, we first arrange Eq. (1) in the form:

2I [NI, - (AT) 0 - (3)I2 •2 N II 2 1 A) r 1/1 - G(i- /Wm)2 dt] "

By multiplying both sides of Eq. (3) by R 2 , and by multiplying L2 and taking the

derivative with respect to time, we then obtain:

RI12  2 N 1 1 - (AT) 0 - (4)

Ld2 L2 [N dqd (5
N2 N dt dt (1- 2 dt

2-2 "
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Substitution of Eqs. (4) and (5) into Eq. (2) gives:

N '- 2 N L 1  d _____1 _

2dt N-2  1 -dtr /om)2dtJ

+ 2NI - (AT) 0 - r -( o/•'m) (6)

After similar terms are grouped, the following equation results:

N2r dt 2/ - 1 ~)2 + (2 + N r/ i •~)'d

R2 r N1 dI1
= -2 [Ni 1 1 - (AT)0] + L N 1 dt 

(7)

Now, let:

--- = x
ýom

by means of which we obtain

dx
dt '0m d't

and:

1/- (1- •/C'm) 2 1 -/ -(1 - x) 2 .

2-3
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t
With these substitutions Eq. (7) becomes:

L2Om d R1 +>+ 2)l
7N r dt d1 t) (1 2 (Pi 2 r N r d1-(1 -x

R 2 N1 dl 1

N 2 IN 1 -(AT) 0 1 + L 2  N2 dt (8)

Next, let:

1x = y

whence:

dx d
dt dt

Substitution of these into Eq. (8) yields:

L 2ý'm d R••• y2 ddtO NR2 1ý• y2dy

Nr dt -, 2•m+N 2r dt
2 t N2-'m

R N11 dI1
N 2 tNII (AT) 0 1 + L2 N dt (9)

2 2

Lastly, let:

y = cos u

2-4

LOCKHEED MISSILES & SPACE COMPANY



8-44-63-2

whence:

Sdudy=_sinu du

dt dt

• I -y2 - sin u,

and:

2
dy d sinudu d u

dt y2 dt dt sin u d t2

With this new change of variable Eq. (9) is transformed into:

N 2 r dt 2+ r 2 In u dt

R 2  N1 dI 1

L NI (AT) 0 1 + L2 N2 dt (10)
L2 1112 N2d

Upon dividing through by L 2 PmI/N2 r this becomes

d2+ R.2 +N2 r dud4u(+ + N ~sinu) d

Rr-+ -(1
d 2 N2 _2__-

L2 qm [N1 I 1 - (AT) 0 ] dt
2 (pm(p m

2-5
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For the particular case in which the driving force I1 is a step function, its derivative

with respect to time dI1/dt is equal to 0 for t - 0 + , whereupon Eq. (11) reduces [

to: !
d Nu ,- sRin, .u) du L 2q (N 11 - (AT)() (12)t2 L2 2 L d't L m -p I A)

This last equation has the form indicated in the introduction. Before presenting its

solution, we believe it worthwhile to review the transformations leading to the final

form.

Figures 2-2a, 2-2b, and 2-2c show plots of the function f(ý ) = V1 - (1 - /m)2

before and after being subjected to the changes of variable: x = ,/m' y = 1 - xm
The arrows on the curves indicate the direction taken by a moving point as q,

increases. In Figs. 2-2a and 2-2b this motion is clockwise, while in Fig. 2-2c this

motion is counterclockwise. The contrast of directions may also be seen by tabulating

corresponding values for (p, x and y as follows:

(p x y

0 0 1

(Pm 1 0

2m 2 - 1

Now consider the two functions y = cos u, and f(u) = 1 cos2 u sin u,
over the same range of variables, namely:

y = cos u u f(u) sin u

1 0 0

0 7r/2 1

-1 7r 0

2-6
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0~ 
2m2•

f(x) 1 f(x) =r - X

01 2

x m

(b)

f(y)f(y) =

x0= 0

y- .

f(O) versus 0 ; f(x) versus x ; f(y) versus y

(C)

Fig. 2-2 Plots of the Function f((p) = I/ - (1 - p/~ )2

2-7
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i
Plots of these functions are given in Figs. 2-3a and 2-3b. Again the arrows on the

curves indicate the direction taken by a moving point as tp increases. Attention is

called to the fact that, as (p increases from 0 through pm to 2pm , the variable

u increases from 0 through 7r/2 to r .

It should be kept in mind that qp is the dependent variable, whereas time is the

independent variable. The values q' = 0 and u = 0 correspond to t = 0, and

increasing values of (p and u are associated with increasing time. When t = 0,

then sin u = 0, and the differential Eq. (12) becomes:

d 2 u R 2 du R2r N

dt 2  L 2 dt L27 -m -N1 
- (AT10(3

At the time when 'p = (pm' sin u = 1, and the differential equation, therefore, has

the form:

du (R 2  2 r - R2 r [NI1 (AT) 0  (14)

dtR + + N -L

At the time when 'P = 2om, the time when the switching process ends, we again have

sin u = 0; consequently, the differential equation once more reduces to:

R2 Ldt RAr

d2u + R 2NIII (AT)0 (15)
dt L2 = m

It is not difficult to find an electrical analogue for Eq. (12). Assume a circuit

R r
consisting of a battery -- IN[1 I, - (AT) 0 1 energizing a circuit comprised of an

(P m

inductance L2 in series with a fixed resistor R2 and a variable resistance. Let

2-8
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0-

Cos U

-|U -=-----am

(a)

sin u 2= m

0 0 1/

U -

(b)

Fig. 2.3 Plots of Functions y = cos u, and f(u) = Cos

2-9
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the variable resistance be a sinusoidal function of the charge q which has flowed
through the circuit and be of maximum value N2 r, namely, Nr sinq. The circuit"

is shown schematically in Fig. 2-4.

(r[NiI, (AT)0 N2 r sin q-1
Fig. 2-4 Electric Circuit Analogue for Eq. (12)

The appropriate electrical differential equation is:

d 2 r 2 r

+ L+ N sin q dINt - (AT)0. (16)
dt2 L2 2 L dt L2(Pm

As time progresses from t = 0 (at which time q = 0), through the time when

q = ir/2 coulombs to the time at which q = 7r coulombs, the variable resistance

2
ranges from 0 to N 2 r and back to 0.

At any given instant of time, Eq. (12) may be considered as a second order differential

equation with constant coefficients. At a slightly later instant of time Eq. (12) may

again be considered to have constant coefficients, but with the coefficient of the first

derivative a little altered from its previous value. This suggests that a possible method

of solution is to solve the differential equation for each particular instant of time by a

standard method as, for example, by the Laplace transform, using as the initial con-

ditions for each solution the value of the dependent variable and its first derivative

obtained from the solution for a slightly prior time. This solution was completed and

will be outlined in Section 3. For that solution we need first to settle upon a value for

du/dt at t = 0, which will occupy us for the rest of Section 2. (The value u = 0 at

t = 0 is the second initial condition needed, but this is already known.)

2-10
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Lacking any definite knowledge about du/dt at t = 0, let us assume that it is equal

to zero. We shall now show that this assumption implies that in the vicinity of t = 0

the flux 9 must vary as a power of t greater than 2. Since in view of experimental

work this is reasonable, the assumption will be used in the later treatment.

From the relation:

u - arc cos y

we get, by differentiation:

du = 1 1 (17)
dt - 2 dt rf _ y C/j7 dt

At t = 0, y = 1, and the denominator of Eq. (17) is zero. In order for du/dt to

remain finite at this point, we must have ýy 0 as a greater power of (1-y) than •
d t2

say as (l-y)2 where, for reasons which will appear presently, the range of
1

is restricted to 0 < c < -. From the original transformations:

1 - y = x = (P m

the assumption that:

.+C

0 as (1 - y) 2

dt

2-11
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requires that:

-0 as -Y-dt (Pm

Therefore let

dt = 1•(K 1 ;=aconstant) (18)

or alternatively:

S K= K1 dt . (19)
+E

An indefinite integral yields:

1
2E

K= 1 t + K (K 2 = a constant) (20)

whence:

1 -(K1 t + K 2 ) ) ( K1 t + K. ) 2 /( 1 2 E) (21)

When t = 0, q = 0; therefore, K2 = 0. Consequently, we get:

2

S= Kltl-2 E (22)

Since E is positive, (p varies as a power of t greater than 2 in the vicinity of

t = 0.

2-12
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If c = 1/2, we must go back to Eq. (19) and repeat the integration. We then obtain:

= K dt (23)
(P 1

Inqý = K1t + InK 2  (24)

whence:

(p = K2 exp (K1 t) (25)

The value t = 0 yields q = K2 , which is inconsistent with the previously assigned

condition q9 = 0. Therefore, the value c = 1/2 is not allowed.

For values of E > 1/2, the exponent of (K 1 t + K 2 ) in Eq. (21) is negative and the

following results:

1

2

(Klt + K2)2E-1

The value t = 0 yields

1
K 2

which again is inconsistent with the assigned condition q' = 0. Therefore, the values

E > 1/2 also are not allowed. Consequently, the range of E compatible with the con-

ditions (p = 0, dqp/dt =0 at t =0 (or u = 0, du/dt =0 at t =0) is:

1
0> 2

2-13
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as mentioned above. The value of c will not be determined precisely, although it

could be determined from a particular solution. The discussion on the range of E

merely serves to give us an idea of the shape of the flux curve near the time origin,

I

that is, it is at least parabolic,

2-14 1
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Section 3
ITERATIVE PROCEDURE FOR SOLVING THE DIFFERENTIAL EQUATION

For reference we repeat Eq. (12) of Section 2:

d2 u R/_ 2 r du dU R_2 r

2_ (-L2 IN 2 sinu d NI[ - (AT) 0 ] (1)dt2 N2 at -fiL2 m

For brevity we shall make the further substitutions:

R2 2 r
Ai = L- + N2 L sin u(ti)

1 2 2

B = -f - N1I - (AT )0

In these substitutions, B is a constant. The subscript i of Ai and sin u(ti) is used

to indicate that these quantities, which are variable, wil be evaluated at the discrete

times ti(i = 0, 1, 2, ... ), and considered constant over the interval t i+ 1 - ti ' In

addition to u(t it) we must evaluate its first derivative with respect to time u'(tt).

With this new notation Eq. (1) becomes:

d2u + A du B (2)

dt 2  idt

subject to the initial conditions

u(t 0 ) = 0

u'(t 0 ) = 0

3-1
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Since we are considering Ai as a constant for the present, we may apply the Laplace

transform to Eq. (2). To do this we need the following relations (Ref. 1):

.•d2u• = 2U(s) _ su(ti- u'(ti (3a)
dt2

du

at = sU(s) - u(ti) (3b)

= Bs (3c)

where U(s) is the Laplace transform of u(t) . The use of u(ti) and u'(ti) in

Eq. (3) rather than u(t 0 ) or u'(t 0 ) [or u(O+) and u'(0+) in more customary

notation] serves to emphasize the fact that time is measured from ti (i = 0, 1, 2, ... )

rather than only from t . Substitution of Eq. (3) into Eq. (2) yields:

s2 U(s) - su(t) - u'(ti) + Ai [sU(s) - u(ti)] B (4)

Rearranging the terms of Eq. (4) we obtain:

s(2 + Ais) U(s) = + (,.) + Aiu(ti) + su(ti) (5)

whence:

BU'(ti) + Aiu(ti) u(t.)

U(s) B_ +U=( u( I+ tI
s 2(s + Ai) s(s + Ai) s + Ai

3-2
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I
From a table of Laplace transforms (Ref. 2) we find the following:

1 i exp (-Ait) + Ait - 12= (7a)
s (s + Ai) A i

•-1 1 1 - exp (-Ait)

s(s + Ai) A.i (7b)

S+1 = exp (-A.t) (7c)
~s +A.11

With the aid of these, the inverse transform of Eq. (6) is:

u(t) 1 A exp (-Ait) + Ait - 11 + Aulti) +Aui 1(t.) - exp(-Ait)

+ u(ti) exp (-Ait) (8)

Multiplying out the second group of terms on the right and combining it with the third we

obtain:

u (t I
u(t) = u(ti) +-• [1 - exp (-Ait)] + B•2 exp (-Ait) + Ait -1 (9)

1 A. 1
1

Differentiation of Eq. (9) yields:

u'(t) = u'(ti) exp(-Ait) +B- [ - exp(-Ait)J (10)
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The forms of these equations are interesting. Let us first consider Eq. (9). This

equation states that the value of u at some time t measured from time ti , namely

u (t) , depends on the value of u at the prior time u (ti) ; on its derivative at that

time u'(ti) multiplied by [1 - exp (-Ait) ]/Ai ; and on the driving force B multiplied

by [exp (-Ait) + Ai t - 1 ]/A i Equation (10) says that the derivative of u at some

time t measured from time t, , namely u'(t) , depends on the value of u' at the

prior time u'(ti) , multiplied by exp (-Ait) , and on the driving force B multiplied

by [1-exp(-A i t) ]/Ai ' These equations are assumed to be valid only over

a small time interval At = t +1 - ti * These equations, therefore, should more prop-

erly be written as

uu(ti(t 1 ) = u(ti) + ny 11f exp -Ai(ti ti)]}A~il I- uti) ++ +1 t)
1

A 2 I(ti+ - +I +i(ti - ti) - 1 (

and:

=l ~ u'(t ) exp [A 1 ( 1 i-t) +-al - exp I-Ai(ti+l - ti)).(12)
1

From the foregoing equations, it is apparent that if we know the values of u, u' and A

at time ti , namely u(t.) , u'(ti) , and Ai , we can then use Eqs. (11), (12) and the

following relation:

R2 2 r

A, = - + N2 r sin u(ti) (13)
L2  2 L 2  1

to calculate u(ti~l) , u'(ti+1 ) and Ai 1 . These last equations may then be utilized

to calculate u(ti+ 2 ) , u'(ti+2) and A,+ 2 , etc. Proceeding in this way, we are able

to calculate the solution of Eq. (1), starting with u(t 0 ) = 0, and continuing until

u(ti) = ir.
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This procedure lends itself readily to machine or hand computation. It will be noticed

that the expression multipling u'(ti) in Eq. (11) is identical with that multiplying B

in Eq. (12). Consequently, only three exponential expressions need be evaluated at

each step.

If in Eqs. (11) and (12) we denote the time interval by At = t i+ 1 - ti , and if we choose

this interval small enough so that AiAt << 1 , then it is convenient to expand the expo-

nential expressions in infinite series of which only the first few terms will be needed.

We then obtain:

1 At((i~t)2 ) .... _

1 - exp(-AiAt) + A_ 1- At +

= =1 [[AiAt2 (AiAt)3 (AiAt)4 ]AAt [1 A.31 + 2 1 311

A+

r 2 3 4

( AAt (AAi A 4) 2

(At 41 - (14b)

21 ~ 2i -- 1 31.

S3-5

L M S
S~LOCKHEED MISSILES & SPACE COMPANY



8-44-63-2

(A 1At) 2  (A At) 3

exp (-AiAt) = 1 A.At + 2!1 31 + (14c)

With these substitutions, Eqs. (11) and (12) become:

u(ti+i) =u(t.) + utt)tI- 3!~ 4-( t) 3 ++ B(At A 1 At (A+At) 2  (AiAt) Ju~ i+ ) ~ t ) u( i) t 2 A . t 2----r 1 + '

2 1 31 41 51 + (15)

and:

(A.At)2 (AAt) 3
u'(t u'(ti) I - AiAt + 1 1 +

i+1~~ 3 13

+ BAt [I- 2i-- + 3A 4 ) + (16)

As an example of the use of these formulas, consider the following equation:

2 du
d2u + 1+sin u) du~ 20 (17)

dt

Here we have set:

R 2,
- 1 second 1

L2
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2 r2-N2 - = 1 second

B RL2 r mINI1 1 (AT)0] = 20 seconds2 m2 L

Then:

A. = 1 + sinu(t (i = 0, 1, 2,...)

As u varies from 0 through 7r/2 to 7r , the quantity Ai varies from 1 through 2

and back to 1 again. Let us choose a time interval At = 0. 05 seconds , which is

small compared to the time constants L2/R and L 2 /N2 r , each of which is equal to

1 second. We also note that A. At varies between 0.05 and 0. 1 which are small com-

pared to 1, so that only a few terms of the expansions in Eqs. (15) and (16) are required.

Utilizing the conditions

U(to) = 0

u'(to) = 0

we have that:

A0 =1

A0 At = 0.05

and that:

u(tl) = u(0.05) = 0 + 0 + 20(0.05)2 (0.491770) = 0.024 589

u'(t 1 ) = u'(0.05) = 0 + 20(0.05)(0.975 412) = 0.975 412
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sinu(tl) = sin (0.024589) 0.024 587

A1 = 1 + 0.024 587 = 1.024 587

For the next set of computations we then get:

A 1At = 0.051 229

u(t 2 ) = u(0.10) = 0.024 589 + 0.975 412(0.05)(0.974 817)

+ 20(0.05) 2(0.491 570) 0.096 710

uT(t2) u'(0.10) = 0.975 412(0.950 061) + 20(0.05)(0.974 817) = 1.901 518

and so forth.

From the solutions for u and u' we are then able to determine the flux and its rate

of change by going back through the transformations:

1-y =x = - y =Cosu

There results:

2-- = 1 - cos u (18)(P m

and:

1m dt = s du = sin u[u'(t)]

dt m nud-

in which q m is assumed to be known.
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Section 4

SOLUTION OF THE DIFFERENTIAL EQUATIONS FOR THE SECONDARY CURRENT

In order to determine the secondary current we have to solve Eq. (2) of Section 2 which

is rewritten in the form:

dI 2  R2  N2 dp
-- •L2 2 L dt ()

Here d_ is known from Section 3, but not in a neat analytical form. Equation (1) is a
dt

particular case of a more general equation whose solution is readily available (Ref.7):

d- 2-+ P(t)I2 = Q(t) (2)

Upon multiplying both sides of this equation by the integrating factor exp [f P (t) dt ,

the left-hand side becomes an exact differential and results in the following:

d I 2 exp[fP(t)dt]I - Q(t) exp fP(t)dt] (3)

Integration of Eq. (3) then gives:

12 exp[fP(t)dt] f Q(t) exp [fP(t)dt]dt + C (4)

where C is a constant.
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I

Applying this method to Eq. (1) with:

R 2

P (t) L

'2Q (t) L 2- dt

we obtain the counterpart to Eq. (3):

d 2 N2 4T expj t (5)F-[ 12 L 2 L2 dt L2

In order to avoid the integration constant C which appeared in Eq. (4), we shall inte-

grate Eq. (5) between the limits 0 and t , rather than use an indefinite integral. We

then obtain:

QR2 t t N 2 ftd R2 t

I2 xp t)] = _ f dt exp ( t dt (6)

from which:

I 2 (t) exp ) - I2(0) = k f __ exp t dt (7)

0

where the notation 12 (t) is used to emphasize that 12 is a function of time, and 12(0)

is the current 12 at t = 0 . Solving for 12 (t) we then find:

1 = I 2(0) exp( t +j2exp( t f .exp t)dt. (8)

0I2(t)
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Since in our case 12(0) = 0 , Eq. (8) reduces to-

xp2 (R 2 tR 2 d12 (t) = exp \ dt texp 2 dt (9)
2 L2 ( t (L 2 t

It will be more convenient to obtain the solution in terms of d- which is

easily done as follows:

N2 (t) =N 2  e exp(2 t ft exp t)dt. (10)

0

This foregoing equation may be normalized by dividing through by N2 pm/L 2 to give:

I2 (t) (R2) Itdx R 2R2 t /- exp L t. (11)N2 IJ°m2L/

The integral on the right in Eq. (11) was evaluated by using the trapezoidal rule (Ref.

7) which is simple to apply and well suited to provide a "running" value of the integral.

Multiplying this running value of the integral by exp [- (R2 / L2 ) t I gives the normal-

ized current. By way of illustration, for the differential equation (17) used as an ex-

ample in Section 3, the right-hand side of Eq. (11) becomes:

-t f t dx atedetft- etdt.

0
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dx
The first few values of dx arrived at by the iterative procedure of Section 3, and of

dx t f tdx etdt and e-t dx ta--de ] -edt are as follows:

0 0

d't d-e e0 -etdt e _0 d

0 0 0 0 0

0.05 0.023 982 0.025 212 0.000 630 0.000 599

0.10 0.183 609 0.202 919 0.006 334 0.005 731

0.15 0.587 380 0.682 438 0.028 468 0.024 503

The integration is carried out from t = 0 to the time at which u = i. For this ex-

ample, that time is approximately 0. 65 seconds, at which time the switching process

is complete, the flux ýp has reached the value 2 (p , and thereafter = 0
' dt "

The current in the secondary circuit has some finite value, and must decay to zero

through the inductance L 2 , the resistance R 2 , and the secondary turns N2 linking

the core. Since k is zero, and will be assumed as remaining zero throughout the
dt

current decay time, there is no voltage induced in the secondary. The secondary

winding, consequently, may be assumed as a short circuit during this time. The cur-

rent decays, therefore, from its previous final value 12f in accordance with the differ-

ential equation: T

dl2 7

L2 + R 2 2  0 (12)I
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The solution is known to be (Ref. 3):

12 (t) = 2f exp (2 t (13)

where time t is now measured from the time at which the switching process reached

completion. In order to keep the quantities involved consistent with the prior notation,

this equation may be normalized also and written as:

12 (t) I2f exp t (14)

N2 pn/L 2 = N2mL2

For the example we are pursuing, the final normalized current was 1. 595 at t 0. 65

seconds. Thereafter the current was assumed to decay as:

12 (t) -t

N2m/L = 1.595e
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Section 5

COMPUTED CURVES

The following differential equations were solved by the methods outlined previously.

d2u =+ K 20 (1)

dt dut
2t

dt2u + (1 + sin u) jt- 20 (2)du du 20(2

d2

d 2 udu
du + (1 + 2sinu) = 20 (3)

d2

d 2 udu
d2 + (1 + 4sinu) = 20 (4)

Curves were plotted for the quantities u(t) , u'(t) , x(t) , x'(t) and 12 (t), with

12 (t) presented on two different time scales in order to show the large trailing edge

of the current. These are displayed for Eq. (1) in Figs. 5-1a, 5-1b, 5-1c; for Eq. (2)

in Figs. 5-2a, 5-2b, 5-2c; for Eq. (3) in Figs. 5-3a, 5-3b, 5-3c; and for Eq. (4) in

Figs. 5-4a, 5-4b, 5-4c. The ordinate and abscissa corresponding to the time when

the variable u = ir , which ends the switching process, are indicated on Figs. 5-1a,

5-2a, 5-3a, and 5-4a. As the coefficient of sin u in the differential equations varies

from 0 through 4 , the switching time increased from 0. 615 through 0. 655 and 0. 705

to 0. 830 seconds.

The reader is probably most familiar with the curve of u' for Eq. (1), which corres-

ponds to the rise of electric current in a series L-R circuit with fixed circuit elements,
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I

4.0 d 2 u 20 1.0
dt2dt

.8 - ~~
u(0) 0

u'(0) = 0

4 -At = .05 seconds

.2 .8

3.0

.8 .7

.6

.4 .6

.2

2.0 .5
uU

U
.8

.6 .4

.4

.2 .3

1.0

.8 .2

.6

.4 .1

.2

0
0 .1 .2 .3 .4 .5 .6 .7 .8

t - seconds

Fig. 5-la Plot of d2u + L- 20: u and u' vs. t
dt2
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9

d2u + = 20

d t2  dt

.8 7

.6

.4 6

.2

2.0 5

8 .8E

S .64

x .4

.2 x 3

1.0

.8 2

.6

.4 1

.2

0
0 .1 .2 .3 .4 .5 .6 .7

t - seconds

d2u + du 20: x and x' vs. t
Fig. 5-lb Plot of T +2 dtdt2
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4 .2  N2 d, N 22m dx

.2 dt 2 2/t - dt

K 1.0 d 2u du

-~.8

.6

.4

.2

0 .1 .2 .3 .4 .5 .6 .7 .8 .9

t - seconds

.6

.4

.2

S .8

.6

.4

.2

0
0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

t - seconds

2du du=

Fig. 5-1c Plot of d- + ý - 20: Normalized Current vs. t
dt 2  dt
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4.0 1.0

.8

.6 d 2 u + (1+ sinu) du = 20 .9
dt

2  dt

.4
u(o) = 0

.2 u'(0) = 0 .8

3.0 At = .05seconds

8 -- .7

.6

.4 .6

.2

2.0 u' .5

.8

.6 u .4

.4

.2 .3

1.0

.8 .2

.6

.4 .1

.2

0
0 .1 .2 .3 .4 .5 .6 .7 .8

t- seconds

Fig. 5-2a Plot of d!u + (1+ sinu) L- 20: uandu' vs. t
dt2
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.8 2  7
du + (1 + sinu) ýL= 20

.6 - dt2

u(O) = 0 6

u'(0) = 0

.2 At .05 seconds

2.0 X ý h/m 1 - COS U - 5

.8 dcp/q mS' x? ul sin uE X dt

S .64

.4

.2 3

1.0

.8 2

.6

.4 I

.2

0
0 .1 .2 .3 .4 .5 .6 .7 .8

t-seconds

2Fig. 5-2b Plot of du+ 1 + sinu 20: xandx'vs. t

dt dt
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.6 dl 2  2 N2 d¢ N 2 md

Ft 2 L2 t L 2 dt

2 du
d U + (1+ sin u) du 20

.2 dt
2  (

"1.0

.6

.4

.2

0
S .1 .2 .3 .4 .5 .6 .7 .8 .9

t seconds

* 6

.4

.2

1.0

Z" .8

.6

.4

.2

0

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

t- seconds

2
Fig. 5-2c Plot of dtu + (1 + sin u) du 20: Normalized Current vs. tdt2
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.8

.6 9

.4 '
.22 du du

3. 2 u+ (1 + 2 sin u) ýqu 20
3.0 - dt2 =

U(0) = 0
.8 - u'(0) = 0 7

At = .05 seconds

.6

.4 6

.2

2.0 -5

.8

.6 4

.4

.2 3

.8 2

.6

.4 1

.2

0 .1 .2 .3 .4 .5 .6 .7 .8

t - seconds

Fig. 5-3a Plot of A + (1 + 2sinu) - = 20: uandu'vs. t
dt2 dt
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7

d2u + (1 + 2 sinu) -d = 20dt 2

u(O) = 0 - 6

u'(0) = 0
6t = .05 seconds

y = cos u x1
2.05

2.0 -- y = u' sinu

x = 1-y
.8 x -y

"• .4-

.2 3

1.0

.8 2

.6

.4 1

.2

0
0 .1 .2 .3 .4 .5 .6 .7 .8

t- seconds

Fig. 5-3b Plot of d 2 u + (1 + 2 sin u) Lu = 20: xandx' vs. t
dt2
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.6 - l N
2+dt 2d.

2

dt

S1..:

.6

.4

.2

0
0 .1 .2 .3 .4 .5 .6 .7 .8 .9

t - seconds

.6

.4

.2

.6

.4

.2

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

t-seconds

2
Fig. 5-3c Plot of L + (1 + 2 sin u) !j = 20: Normalized Current vs. t
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I
I

4.0 1.0

.8

.6 .9

. 4 d d2u + (1 + 4 sinu) du 20
dt2

.2 .8
u(O) = 0

3.0 u'(0) = 0

.8 t= 0.5seconds .7

.6

.4 .6

.2

2.0 .5

.6 .4

.4

.2 .3

1.0

.8 .2

.6

.4 .1

0•0 .1 .2 .3 .4 .5 .6 .7 .8 .

t-seconds

2
Fig. 5-4a Plot of d u + (1 + 4sinu) d 20: uandu' vs. t

dt2
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*1"

-I

d~u du
.6 -'d'•- + (1 + 4 sin u) L = 20

.4 u (0) 0 6

.2 u'(0) - 0

2.0 At .05 seconds 5
y Cos u x

•8 -y ' u l + s in u

S.6 - 4

.4 x4 l-y

.2 3

1.0-

.8 2

.6

.4 1

.2

0 .1 .2 .3 .4 .5 .6 .7 .8 .9

t- seconds

Fig. 5-4b Plot of d~u d 1+4i u)d u du
F - o+ (1 + 4sinu) - = 20: xandx t vs. tdt 2
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.4 dl 2  N 2 d N 2 d.

.2 dt2 L 2dt -L-2 dt

• 1.0 2 du

du + sin u) du= 20
- .8

S.6

.4

.2

0
0 .1 .2 .3 .4 .5 .6 .7 .8 .9

t - seconds

.4

.2

1.0

• ~ .8

1Z C .6

.4

.2

0
0 .2 .6 .8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6

t - seconds

Fig. 5-4c Plot of A~ + (1 + 4 sin u) = 20: Normalized Current vs. t

dt2 
dt
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energized by a battery. In view of the analogy cited in Section 2 (see Fig. 2-4) the

pertinent equation for the circuit charge is: -

d-q +q 20 (5)

dt 2  dt

I
If we change the dependent variable from charge to current by means of the following

substitution:

1 dt (6)dt

this becomes:

dId- + I = 20 (7)

The solution is:

I = 20(1 - e-t) (8)

which represents an exponential rise of current to a final value of 20 amperes with a

time constant of 1. The variable u' has the following identical form:

u' = 20(1 - e-t) (9)

of which only 8/10 of a time constant appears in Fig. 5-1a. Since the curve for u' is
almost linear over this portion, the curve for u is almost parabolic. As the coeffi-

2
2ent N r/L2 of sin u increases (corresponding to increasing N2 'or r or both,

L2 remaining fixed), a pronounced wiggle appears in the curve for u' . This finally

tends to make u' vary about a constant value over a portion of its range (as u' =

4.375 ±. 125 over the range 0. 285 - t -s . 725 in Fig. 5-4a) which causes the variation

of u to change from parabolic to almost linear.
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I
The output voltage, which is proportional to x1 , has the highest peak for the coeffici-

ent of sin u equal to zero, then decreasing from 7. 1 through 6.3 and 5.6 to 4.45 for

a coefficient of 4. Peak values of corresponding normalized output currents decrease

Sfrom 1.64 through 1.59 and 1.56 to 1.48.

I
I
I
1
I 5-15

1 LOCKHEED MISSILES & SPACE COMPANY



S 1 8-44-63-2

I
I
I Section 6

CONCLUSIONSI
Starting from Neeteson's approximation for the flux switching characteristic of a mag-

netic core, we have derived the differential equation describing the case when such a

core is terminated in series inductance and resistance. By means of successive trans-

formations, the equation was reduced to a form which could be solved by an iterative

I procedure. A family of solutions was computed and plotted.

To date no attempt has been made to check these curves against experimental results

although verification is planned for the future. Since Neeteson's approximation is ad-

mittedly a compromise between exact fit to the flux characteristic and mathematical

simplicity, only a fair agreement is to be expected.

It is believed that the differential equation and solutions are applicable to flux steering

through multipath magnetic structures.

The mathematical methods employed are themselves of some interest.

I
1
I
I
1
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Section 7
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